Consumer Confidence Report (CCR)

2021 Water Quality Report
Marine Corps Installations Pacific
Tri Service Hangar
Pohang, Republic of Korea

Introduction
This is an annual report on the quality of tap water delivered to Tri-Service Hangar, Republic of Korea Marine Corps Base. The purpose of this report is to provide you, our customers, with general information about the quality of water you drink.

What is a Consumer Confidence Report?
In 1996, Congress amended the Safe Drinking Water Act (SDWA) to require all community water systems in the United States to provide their customers with a brief annual water quality report called a Consumer Confidence Report (CCR). Although the Korea Environmental Governing Standards (KEGS) do not specifically require annual water quality reports to be developed for customers, it is the United States Marine Corps’ policy to prepare annual water quality reports modeled after the SDWA CCR.

Safe Drinking Water
Drinking water regulations require that all installation water supply systems are sampled and analyzed for a variety of contaminants in drinking water. Marine Corp Base Camp Mujuk Environmental personnel are committed to providing safe drinking water to you and your family. Our routine monitoring program, which follows water quality standards and monitoring requirements set forth in the KEGS, enables us to maintain optimal water quality at Tri-Service Hangar Pohang.

Information about Drinking Water Contaminants
All drinking water, including bottled water, may reasonably be expected to contain small amounts of contaminants dissolved in the water. The presence of trace contaminants in the water does not necessarily indicate that the water poses a health risk. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, naturally-occurring radioactive material, and can pick up substances resulting from the presence of animals or human activity. Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. In Korea, the Government of Korea and the US Forces, Korea, also regulate the quality of drinking water. Our monitoring program allows us to avoid potential health impacts that may occur if we drink water containing contaminants over long periods of time above the standards set forth in the KEGS.

Do I need to take Special Precautions?
Our monitoring program identifies contaminants in drinking water and allows us to avoid potential health impacts that might occur if we consume water containing contaminants over long periods of time above the standards set forth in the KEGS. However, some people may be more vulnerable to contaminants than the general population. For example, immuno-compromised individuals such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, the elderly, and infants can be particularly at risk from contaminants. These individuals should seek medical advice about drinking water from their health care providers if they have questions.

Tri-Service Hangar Water System Information
The Tri-Service Hangar drinking water system is connected to the Republic of Korea Marine Corp Base water system, which is supplied water from the Yu-Kang Water Treatment Plant in Pohang. The water supplied to this treatment plant comes from two surface water sources, Hyeong-san River and An-gye Dam.

Monitoring of Your Drinking Water
We are committed to providing safe drinking water to you. We use only EPA approved laboratory methods to analyze your drinking water. Trained personnel collect water samples from the distribution system and residential taps. Samples are then shipped to an accredited laboratory where a full spectrum of water quality analyses are performed. The US Public Health Command Region – Pacific, Environmental Laboratory and contracted personnel analyzed monitoring samples in 2021, of which only trihalomethanes was above the KEGS Maximum Contaminant Level (MCL). Results from the sampling are located on the next page.

For More Information Contact:

MCB Camp Mujuk
Sean Lee
Supervisory Environmental Engineer
DSN: 763-6766 sean.lee@usmc.mil
2021 Water Quality Table
Tri-Service Hangar

<table>
<thead>
<tr>
<th>Inorganic Contaminants¹</th>
<th>Violation?</th>
<th>Units</th>
<th>Highest Level Detected</th>
<th>MCL</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>No</td>
<td>mg/L</td>
<td>22</td>
<td>N/A</td>
<td>N/A</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium</td>
<td>No</td>
<td>mg/L</td>
<td>0.024</td>
<td>2.0</td>
<td>N/A</td>
<td>Runoff from fertilizer use; leaching septic tanks/sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate</td>
<td>No</td>
<td>mg/L</td>
<td>2.25</td>
<td>10</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>No</td>
<td>mg/L</td>
<td>0.058</td>
<td>1.0</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microbial Contaminants</th>
<th>Violation?</th>
<th>Units</th>
<th>Highest Level Detected</th>
<th>MCL</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>>1 positive sample per month, or any repeat sample is positive</td>
<td>N/A</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthetic Organic Chemicals³</th>
<th>Violation?</th>
<th>Units</th>
<th>Highest Level Detected</th>
<th>MCL</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exceedances in CY 2021.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radionuclides⁴</th>
<th>Violation?</th>
<th>Units</th>
<th>Highest Level Detected</th>
<th>MCL</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exceedances in CY 2021.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Disinfectants</th>
<th>Violation?</th>
<th>Units</th>
<th>Highest Level Detected</th>
<th>MRDL</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Chlorine</td>
<td>No</td>
<td>mg/L</td>
<td>0.13</td>
<td>4.0</td>
<td>N/A</td>
<td>Water additive use to control microbes</td>
</tr>
<tr>
<td>Disinfectant/Disinfection Byproducts</td>
<td>Yes</td>
<td>Units</td>
<td>Annual Average</td>
<td>MCL</td>
<td>AL</td>
<td>Likely Source of Contamination</td>
</tr>
<tr>
<td>Total Trihalomethanes⁵</td>
<td>Yes</td>
<td>µg/L</td>
<td>105.6</td>
<td>80</td>
<td>N/A</td>
<td>By-products of drinking water chlorination</td>
</tr>
<tr>
<td>Haloacetic Acids</td>
<td>No</td>
<td>µg/L</td>
<td>24.2</td>
<td>60</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFAS®</th>
<th>Violation?</th>
<th>Units</th>
<th>Highest Level Detected</th>
<th>HA</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>No</td>
<td>ng/L</td>
<td>3.8</td>
<td>70</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Perfluorooctanesulfonic acid (PFOS)</td>
<td>No</td>
<td>ng/L</td>
<td><1.8</td>
<td>70</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Violation?</th>
<th>Units</th>
<th>90th Percentile Value</th>
<th>Sites Exceeding AL / No. of Sites</th>
<th>AL?</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>No</td>
<td>mg/L</td>
<td><0.0001</td>
<td>0 / 1</td>
<td>0.015</td>
<td>Corrosion from household plumbing systems</td>
</tr>
<tr>
<td>Copper</td>
<td>No</td>
<td>mg/L</td>
<td>0.24</td>
<td>0 / 1</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations Used:
- AL: action level
- CY: calendar year
- MCL: maximum contaminant level
- MRDL: maximum residual disinfectant level
- mg/L: milligrams per liter
- ng/L: nanograms per liter
- pCi/L: picocuries per liter
- µg/L: micrograms per liter
- N/A: not applicable
- PFAS: Per- and polyfluoroalkyl substances
- PFOS: Perfluorooctanesulfonic acid
- PFOA: Perfluorooctanoic acid

Definitions Used:
- MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water.
- MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water.
- AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Notes:
1. 9 other Inorganic Contaminants were monitored in CY21, but results were non-detectable.
2. No MCL established for Sodium. Monitoring is required so that levels can be made available upon request.
3. 41 Synthetic Organic Chemicals were monitored in CY21, but results were non-detectable.
4. Camp Mujuk is on a quadrennial monitoring schedule for Radionuclides. The next sampling event will be conducted in CY24.
5. Total Trihalomethanes was above the MCL and will have quarterly sampling in CY22.
6. No exceedances of PFAS in CY21. Next PFAS monitoring will be conducted in CY23.
7. The AL for Lead and Copper is based on a 90th percentile value – i.e., no more than 10% of all sampled taps.
Frequently Asked Questions

Why does the water sometimes look rusty?
Rusty or reddish tinted water may occur because of a sudden change in pressure due to fire hydrant flushing, water main breaks, or other disturbances that result in a change to normal water flow. Iron causes the discoloration and is not a health risk. The normal flow of water will usually clear the mains within two hours or less. Check your water by running the water will clear the piping system. If the hot water is rusty, the water heater may need to be flushed. Galvanized iron pipes or fittings within a home or building may also cause discolored water. Running the water will clear the piping system. What is a Boil Water Notice?
Any time a drop in pressure occurs from a water main break or system maintenance, Camp Mujuk Environmental will issue a Boil Water Notice and immediate sampling requirements go into effect. Boil Water Notices in these cases are precautionary and do NOT necessarily mean that contamination has been detected or is suspected. In other cases, if total coliform bacteria are detected as part of our routine sampling program, a Boil Water Notice will also go into effect as a precaution while corrective measures are taken. In this case, resampling continues until the corrective measures are completed.

Is it okay to drink from a garden hose?
The water that supplies the water hose is safe, but a garden hose is treated with special chemicals and can contain bacteria and other substances. Will using a home water filter make the water safer or healthier?
Most filters improve the taste, smell and appearance of water, but they do not necessarily make the water safer or healthier. If you use filters, please keep in mind that they require regular maintenance and replacement or the filter itself can impact water quality. Visit the Center for Disease Control’s filter page to learn more about applicable water filters. https://www.cdc.gov/healthywater/drinking/home-water-treatment/water-filters.html

What can I do to improve the quality of my drinking water?
Running the cold water tap for 30 seconds prior to use helps to flush out small amounts of metals that may leach into water that has been sitting in metal pipes overnight. Water used for consumption should always come from the cold water tap. Hot water has more potential to leach metals into the water.

How will I know if my water is not safe to drink?
Your water supplier must notify you if your water does not meet standards or if there is a waterborne disease emergency. The notice will describe any precautions you need to take, such as boiling your water.

I don’t like the taste/smell/appearance of my tap water.
Even when water meets standards, you may still object to its taste, smell, or appearance. Taste, smell and appearance are also known as aesthetic characteristics and do not pose adverse health effects. Common complaints about water aesthetics include: temporary cloudiness (typically caused by air bubbles) or chlorine taste (which can be improved by letting the water stand exposed to the air).

Does the water system have a lead problem?
The KEPS state that 90% of samples must be below the action level. The water system met that criterion in 2021. The water system will continue to be sampled for lead, and the next samples will be taken in August and September 2022. Elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking.

What are per- and polyfluoroalkyl substances and where do they come from?
Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of man-made chemicals. PFAS have been used in a variety of industries and consumer products around the globe, including in the United States since the 1940s. PFAS have been used to make coatings and products that are used as oil and water repellants for carpets, clothing, paper packaging for food, and cookware. They are also found in some foams (aqueous film-forming foam or AFFF) used for fighting petroleum fires at airfields and in industrial fire suppression processes because they rapidly extinguish fires, saving lives and protecting property.

There is currently no established federal water quality regulation for any PFAS compounds. In May 2016, the EPA established health advisory levels at 70 parts per trillion (ppt) for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Both chemicals are types of PFAS. Out of an abundance of caution for your safety, the Department of Defense’s (DoD) PFAS testing and response actions go beyond the EPA Safe Drinking Water Act requirements. The DoD promulgated a policy to monitor drinking water for PFAS at all service owned and operated water systems at a minimum of every three years.

In 2021, the EPA’s health advisory stated that if water sampling results confirm that drinking water contains PFOA and PFOS at individual or combined concentrations greater than 70 parts per trillion, water systems should quickly undertake additional sampling to assess the level, scope, and localized source of contamination to inform next steps.

Is a Korean translation of the CCR available?
All sections of the CCR are written in English. Please contact the Environmental Protection Specialist at 763-6884 for Korean translation.

수돗물 품질 요약보고서(CCR)는 영어로 작성되었습니다. 한국어 번역이 필요하신 분은 환경부서 담당자에게 문의하여 주십시오.
- 부대 내 연락처 : 763-6766
- 부대 밖에서 연락시 : 0503-363-6766

Where can I go for additional information?
This CCR will be posted on the MCIPAC web page at http://www.mcipac.marines.mil/. Select UNITS tab, then News Center tab, and choose “Consumer Confidence Reports.”

MCB Camp Mujuk
Supervisory Environmental Engineer
DSN: 763-6766
Comm: 0503-363-6766
부대 내 연락처 : 763-6766
부대 밖에서 연락시 : 0503-363-6766